The reaction investigated is the combustion of naphthalene (test material) at constant temperature and pressure.

$$C_{10}H_8(s) + 12O_2(g) \rightarrow 10CO_2(g) + 4H_2O(l)$$

 $\Delta n_{re} = -2$

Reaction is actually not performed at constant pressure!

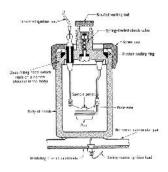
A correction is needed, even though the correction is numerically small compared to the energy change during the reaction.

Definition symbols q_v = heat per mole q = heat generated in the experiment

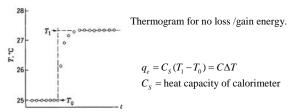
Energy Changes of Reactions

Reactions are associated with energy exchanges. The reaction energy changes can be expressed as ΔH and ΔE . The heat and work associated with the above mentioned quantities can be stated.

Internal energy change; $\Delta E = q + w = q - p\Delta V$

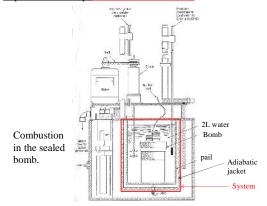

For reactions performed at constant volume, $\Delta E = q_v$

By definition H = E + pV

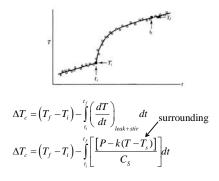

Enthalpy energy change; $\Delta H = \Delta E + \Delta (pV)$

For reactions where the number of gaseous components change $\Delta(pV)$ term is important and,

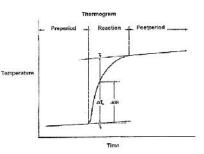
the enthalpy energy change; $\Delta H = \Delta E + (\Delta n_{gas}) RT$ = $q_v + (\Delta n_{gas}) RT$ Bomb (sealed high pressure reaction vessel)

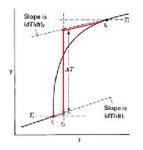


The heat generated from the reaction is absorbed by the calorimeter (container + stirrer + solutions + temperature detectors), raising its temperature by ΔT ;

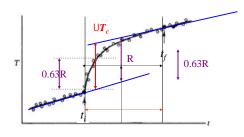

The stirrer does mechanical work thus would raise the temperature of the system slowly before (and after) the reaction. Any object at a higher temperature that its environment would lose heat (Law of Cooling). A corrected temperature change is used for calculations.

Experimental Set up: Bomb calorimeter (Parr)




Heats (Enthalpy) of Combustion

Calorimetry



 $\Delta T_c = determined graphicaly$

Determine the $\Delta T_{\rm C} = \Delta T$ (height) between the extrapolated lines where the areas confined by extrapolated lines and rising part of the thermogram (dotted lines and curve) are equal.

time of start of reaction = t_i time of end of reaction = t_f reaction period = $t_f - t_i$ T_f, T_i are 'initial' and 'final' temperatures of the reaction mixture Corrected temperature rise ΔT_c found graphically.

Measure the time for the 50% completion of reaction =

$$time_{@ half} = \frac{t_i + t_f}{2}$$

Measure the distance between the two extrapolated lines at $\mathit{time}_{@half} = R$

Calculate 0.63R.

Find the point on the T vs t curve (thermogram) which is 0.63R above the extrapolated pre-period line.

Draw a vertical line thro' the above mentioned point; find the intersection temperatures of the vertical line with the extrapolated lines, determine UT_{C} (there is an alternate accurate way to get it)

Take as many (time, temperature) data points as possible at reasonable intervals between them.

Times of observations; before ignition; 5 min after ignition; 4 × (time to reach steady rise after ignition $(t_f - t_i)$) Materials:

Make pellets of naphthalene (two); ~0.5g accurately

Make pellets of benzoic acid -std. (two); ~0.8g accurately

Fe wire (four pieces) (length as needed)

Oxygen pressure ~380 psi and <450 psi.

1 atm = 14.696 <u>psi</u>

PLEASE FOLLOW THE PROCEDURAL DETAILS FAITHFULLY.

Notes:

The experiment is run in two steps.

1. Determination of the heat capacity of the system C_s by measuring $UT_{c^s stal}$ for a combustion of a standard (benzoic acid) sample of known mass m_{stal} and fuse wire of mass m_{Fe} for which $UE_{stal} = q_e$ and therefore,

$$C_{S} = \frac{q_{e}}{\Delta T_{c,std}} = \frac{\Delta E_{std}}{\Delta T_{c,std}} = \frac{26.41 \ kJ \ g^{-1} \times m_{std}}{\Delta T_{c,std}} \frac{g + 6.68 \ kJ \ g^{-1} \times m_{Fe} \ g}{\Delta T_{c,std}}$$

Duplicate. Calculate average C_s .

2. Determination of the q_e for the test substance by measuring $UT_{c,test}$ for combustion of a sample of a known mass m_{test} .

 $q_e + 6.68 kJ g^{-1} \times m_{Fe} g = C_S \times \Delta T_{c,test}$

Duplicate.

Per mole of the test substance burned;

$$\begin{split} q_e + 6.68 \ kJ \ g^{-1} \times m_{Fe} \ g &= C_S \times \Delta T_{c,test} \\ q_e &= C_S \times \Delta T_{c,test} - 6.68 \ kJ \ g^{-1} \times m_{Fe} \ g \end{split}$$

 $\Delta E = -\frac{q_e}{m_{test}} \times \text{Molar Mass of } test \text{ substance}$ Therefore, for the substance heat of combustion ΔH .

 $\Delta H = \Delta E + RT \Delta n_{gas}$ Calculate the mean ΔH .